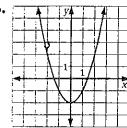

Practice 77

For use with Section 10-2


In Exercises 1-3, match each function with its graph.

1.
$$v = x^2 - 2$$


2.
$$y = (x - 2)^2$$

3.
$$y = (x + 2)^2$$

In Exercises 4-9, describe in words the translation of the graph of $y = x^2$ that produces the graph of each equation.

4.
$$y = (x - 3)^2$$

5.
$$y = x^2 + 4$$

6.
$$y = x^2 - 1$$

7.
$$y = (x + 5)^2$$

8.
$$y = (x - 6)^2$$

9.
$$y = x^2 + 7$$

Tell how to translate the graph of $y = x^2$ or $y = -x^2$ in order to produce the graph of each function.

10.
$$y = -x^2 - 2$$

11.
$$y = x^2 + 5$$

12.
$$v = -x^2 + 3$$

13.
$$y = -(x - 1)^2$$

14.
$$y = -x^2 - 6$$

15.
$$y = -(x + 1)^2$$

16.
$$y = (x - 4)^2$$

17.
$$y = (x - 2)^2 + 1$$

18.
$$y = (x + 5)^2 - 3$$

For the graph of each function, find an equation of the line of symmetry and the coordinates of the vertex.

19.
$$y = x^2 - 5$$

20.
$$y = (x + 1)^2$$

21.
$$y = (x - 10)^2$$

22.
$$y = -(x - 8)^2$$

23.
$$y = -x^2 + 11$$

24.
$$y = x^2 - 7$$

Find a function whose graph fits each description and has the same shape as the graph of $y = x^2$.

25. vertex at the point (3, 0)

- **26.** translation of $y = x^2$ up 5 units
- **27.** translation of $y = -x^2$ left 6 units
- **28.** vertex at the point (-9, 0)